
Coarse geometry: property A and coarse embeddability into a Hilbert Space

In this talk, we will examine two fundamental properties of coarse spaces: property A
and coarse embeddability into a Hilbert space. These properties play a crucial role in
the coarse Baum-Connes conjecture and the rigidity problem for Roe algebras. We will
demonstrate that they are preserved under coarse equivalences and present illustrative
examples. Their significance for the rigidity problem will be addressed in the third
talk.

2 Coarse geometry: property A and coarse embeddability
into Hilbert space

In this talk, we will introduce two invariants of coarse spaces, namely property A and coarse embed-
dability into a Hilbert space. We start with property A. As noted by Bruno de Mendonça Braga in

his book ”Large Scale Geometry in Functional Analysis” Property A, akin to amenability, has 22
ℵ0

equivalent characterisations. This talk will not encapsulate them all.

Definition 2.1 (Higson-Roe). A coarse space (X, E) has property A if for all ε > 0 and all E ∈ E
there exists a function ζ : X → ∂Bl1(X) such that

1. ζx − ζy ≤ ε for all pairs (x, y) ∈ E;

2. The set {(x, y) | ζx(y) ∕= 0} is controlled.

One can view ζ as a function from X×X to the complex numbers. In this case, the second condition
states that ζ has controlled support, while the first condition is a certain condition on the variation
of ζ in the first coordinate. For convenience, let’s also provide the Higson-Roe definition for metric
spaces.

Definition 2.2 (metric version of Higson-Roe). A metric space (X, d) has property A if for all ε > 0
and all R ≥ 0 there exists a function ζ : X → ∂Bl1(X) such that

1. ζx − ζy ≤ ε for all x, y ∈ X satisfying d(x, y) ≤ R;

2. The quantity supx,y{d(x, y) | ζx(y) ∕= 0} is finite.

We begin our study of property A with examples. The first of those should illustrate how to build
the function ζ, while the latter ones aim at providing a huge variety of spaces with property A.
As all bounded coarse spaces are coarsely equivalent to a point, we expect all of them to satisfy
property A, as a point trivially does satisfy it.

2.3 (Example). Bounded metric spaces satisfy property A trivially. Indeed, pick a unit norm vector
v ∈ l1(X), and define ζx = v. The first condition is satisfied for all ε > 0 and E ∈ E , while the
second condition is satisfied as every subset of X ×X is controlled.

Now, we at least see that we are not talking about the empty set of spaces. Probably, the second
easiest coarse space to try is N endowed with the Euclidean metric.

2.4 (Example). Let (N, d) be a metric space whose underlying set is the set of natural numbers
equipped with the Euclidean metric. For given R ≥ 0 and ε > 0 we want to construct a sequence of
norm-1 vectors ζn ∈ l1(N) satisfying the following conditions:

1. ζn − ζm ≤ ε for all n,m ∈ N satisfying |n−m| ≤ R;

2. The quantity supn,m{|n−m| | ζn(m) ∕= 0} is finite.

Pick S ∈ N, and consider the following vectors

ζn =
1

S
[n,n+S]

The second condition of the definition is satisfied, as ζn(m) ∕= 0 means that m ∈ [n, n + S], hence
|n−m| ≤ S. For the first condition, note that for n,m ∈ N such that |n−m| ≤ R one has

ζn − ζm =
1

S
 [n,n+S] − [m,m+S] =

1

S
|[n, n+ S]△[m,m+ S]| ≤ 2R

S

Pick S such that 2R/S < ε, and we are done. Hence (N, d) has property A.
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The previous example might have rung a bell with amenability of Z. One may similarly prove that
all amenable groups have property A.

2.5 (Example: Amenable groups). Let G be a finitely generated group equipped with a shortest
path metric of its Cayley graph. Suppose that G is amenable and let {Fi}i∈N be a Følner sequence
for G, i.e. a sequence {Fi}i∈N of finite subsets of G such that:

1. For every g ∈ G there exists i ∈ N such that g ∈ Fj for all j > i;

2. For every ε > 0 and g ∈ G there exists i ∈ N such that |gFj△Fj | ≤ ε|Fj | for all j > i.

Suppose given ε > 0 and R ≥ 0. Pick i ∈ N big enough so that |gFj△Fj | ≤ ε|Fj | for all g satisfying
γ(g) ≤ R, i.e. for all g that can be written as a product of ⌈R⌉ generators. Define a function ζg for
g ∈ G as follows.

ζg =
1

|Fi| gFi

The second condition is satisfied, as ζg(h) ∕= 0 means that h ∈ gFi, so d(g, h) ≤ supx∈Fi
γ(x) < ∞.

For the first condition, note that

ζg − ζh =
|gFi△hFi|

|Fi|
=

|h−1gFi△Fi|
|Fi|

≤ ε,

for g, h ∈ G such that d(g, h) ≤ R. We are done.

There is a notion of amenability for metric spaces, though it does not imply property A in general.
The class of groups with property A is not exhausted by amenable groups. For example, free groups
have property A.

2.6 (Example: Free groups). Let Fn be a free group on n generators. The Cayley graph of Fn is a
2n-valent tree. Fix R ≥ 0 and ε > 0. Let γ be an infinite ray in the Cayley graph of Fn (i.e. an
image of an isometry γ̃ : N → Fn, where N is endowed with the Euclidean metric). For each g ∈ Fn,
let γg be the unique ray starting at g that follows the same path as γ. This ray is unique, as any
tree is a uniquely geodesic metric space. The ray γg can be constructed as follows.

1. Suppose g belongs to the ray γ. Let n ∈ N be the preimage of g by γ̃. Define γg as the image
of the isometry γ̃ : N \ {1, . . . , n} → Fn;

2. Suppose g does not belong to the ray γ. Let hg ∈ γ be the closest point to g, then define γg
to be the concatenation of the unique geodesic from g to hg and the ray γh defined previously.

For g ∈ Fn consider a set Ag ⊂ Fn that consists of h ∈ Fn such that h ∈ γg and d(g, h) ≤ 3R/ε+ 1.
Define a function

ζg : Fn → ∂B1(l
1(Fn)), ζg(x) =

1

|Ag| Ag (x).

It remains to check that ζg satisfies the Higson-Roe definition. Suppose that d(g, h) ≤ R. Note that

1. For all g ∈ Fn one has 3R/ε ≤ |Ag| ≤ 3R/ε+ 1;

2. For all g, h ∈ Fn such that d(g, h) ≤ R, there are at most 2R elements in Ag△Ah. Indeed, the
elements of the symmetric difference are located either on the shortest path between g and h
(and there are at most R of them) or at the tail of the ray. But since |Ag| = |Ah| there are at
most R elements of Ag△Ah at the tail. The conclusion follows;

Henceforth, we may establish the estimate for the norm of the difference of ζg and ζh:

ζg − ζh1 =


x∈Fn

| 1

|Ag| Ag
(x)− 1

|Ah| Ah
(x)| ≤ |Ag△Ah|

|Ag|
≤ 2R

3R/ε
=

2ε

3
≤ ε

Therefore, the first assertion is proven. For the second assertion, by the first statement above
diam(Ag) ≤ 3R/ε + 1, hence if for some h ∈ Fn the inequality d(g, h) > 3R/ε + 1 holds, then
ζg(h) = 0. Hence Fn has property A.

In the previous example, the only property of Fn we have used is that its Cayley graph is a tree. In
particular, all trees have property A. Examples of space without property A are hard to build.
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2.7 (Example: Space without Property A). Let Γ be a nontrivial finite group. Let d be a metric on
Γ induced by a Cayley graph of Γ and for every n ∈ N equip Γn with a product metric dn (sum of
metrics applied coordinatewise). Define a metric space (X, d) as a coarse disjoint union of {Γn}n∈N,
i.e.:

X =


n∈N
Γn, d(g, h) =


dn(g, h), if g, h ∈ Γn;

|k2 − l2|, if g ∈ Γk and h ∈ Γl, for k ∕= l.

Then (X, d) does not have property A.

Expander graphs constitute another example of such spaces. As we shall see shortly, a subspace
of a property A space has property A. Hence, every coarse space where an expander graph can be
embedded does not possess property A. For example, the Gromov Monster group does not have
property A. Recall that the Thompson group F is a finitely generated group given by

F = 〈x0, x1, x2, . . . | x−1
k xnxk = xn+1 for k < n〉 = 〈a, b | [ab−1, a−1ba] = [ab−2, a−1ba2] = 1〉 .

The question of whether the Thompson group F has property A is open. We haven’t yet proven
that property A is a coarse invariant. I.e., suppose given two coarsely equivalent coarse spaces, one
of which possesses property A, is it true that the second one has property A as well?

Theorem 2.8. Let (X, E) and (Y,F) be coarse spaces and f : X → Y be a coarse embedding. If
(X, E) has property A, then (Y,F) has property A as well.

Sketch of proof. For simplicity, assume that (X, d) and (Y, ∂) are metric spaces. Suppose
that f : X → Y is injective. Suppose given ε > 0 and R ≥ 0. Since f is coarse there
exists R′ ≥ 0 such that whenever d(x, y) ≤ R one has ∂(f(x), f(y)) ≤ R′. Since (Y, ∂)
has property A there exists a function

ζY : Y → ∂Bl1(Y )

that satisfies the two properties from the definition for ε > 0 and R′ ≥ 0. Note that ζY

can be picked to be a positive function. By composing f and ζY , we get a map from X
to ∂Bl1(Y ). Let S ≥ 0 be a quantity such that whenever ζYx (y) ∕= 0 one has d(x, y) ≤ S
and consider the S-neighbourhood f(X)S of f(X). Since f is cobounded there exists a
coarse retraction p : f(X)S → f(X), i.e. a map such that p ◦ i(t) = t for every t ∈ im(f)
and ∂(y, p(y)) ≤ S, for all y ∈ Y . Define

ζX : X → Bl1(X), ζXx (z) =


y∈p−1({f(z)})

ζYf(x)(y).

Note that ζXx has norm one for every x ∈ X. Indeed

ζXx  =


z∈X

|ζXx (z)| =


z∈X



y∈p−1(f(z))

|ζYf(x)(y)| =


y∈Y

|ζYf(x)(y)| = ζYf(x) = 1.

It remains to check that ζX satisfies the required conditions for ε > 0 and R ≥ 0, this is
left as an excersise. Hence every injective coarse embedding preserves property A. For
general coarse embedding f : X → Y recall that f is expansive, hence there exists K ≥ 0
such that

d(x, y) ≥ K implies f(x) ∕= f(y) (we have considered (f × f)−1(∆Y )).

By Zorn lemma there exists a maximal K-separated subset N ⊂ X, i.e. a subset of
X every two diferent points of which are at distance K from one to another. Now
f : N → Y is an injective coarse embedding, hence N has property A by previously
prooven statement. Let ζN : N → ∂Bl1(N) be a function provided by property A for
R+ 2K ≥ 0 and ε > 0. Consider a coarse retraction p : X → N , i.e, a map that sends a
point x ∈ N to itself and a point x ∈ X \N to a point p(x) ∈ N such that d(x, p(x)) ≤ K.
Define

ζX : X → ∂Bl1(X), x → ζNp(x).

It remains to check that ζX satisfies the two conditions from the definition for ε > 0 and
R ≥ 0.
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Applying the above theorem two times we get a proof of the fact that property A is a coarse invariant.
Another consequence of the above theorem is that a subspace of a coarse space with property A has
property A. Property A was shown instrumental in the study of coarse Baum-Connes conjecture and
the rigidity problem for Roe algebras. We will see the latter application in the next talk. We switch
to the study of embeddability of coarse spaces into a Hilbert space. First, let’s define it properly.

Definition 2.9. Let (X, E) be a coarse space. We say that (X, E) is embeddable into a Hilbert
space if for some Hilbert space H there exists a coarse embedding f : X → H, where the coarse
structure on H is induced by the metric d(v, w) = v − w, v, w ∈ H.

It is automatic that coarsely equivalent spaces satisfy this property simultaneously, as any coarse
equivalence is a coarse embedding and composition of coarse embeddings is a coarse embedding.
Moreover, a subspace of a coarse space which is coarsely embeddable into a Hilbert space is also
coarsely embeddable into a Hilbert space.
Note that having a coarse embedding into a metric space already implies that the coarse space is
metrisable. Hence, all coarse spaces which are coarsely embeddable into a Hilbert space are metric.
We will show that any property A metric space is coarsely embeddable into a Hilbert space. Before
we need a preliminary result on the metric structure of unit balls of ℓp-spaces.

Lemma 2.10. Let µ be a measure on a measurable space X and p, q ∈ [1,∞), then the unit spheres
of Lp(X,µ) and Lq(X,µ) are coarsely equivalent.

Sketch of proof. Without loss of generality, let q ≤ p. Define a Mazur map

Mp,q : ∂BLp(X,µ) → ∂BLq(X,µ), f → sign(f)|f |p/q.

Clearly for any f ∈ ∂BLp(X,µ) its image belongs to the unit sphere of Lq(X,µ), since

Mp,q(f)q = (



X

|f |pdµ)1/q = fp/qp = 1.

One can show that for f, g ∈ ∂BLp(X,µ) the following estimate holds:

1

2p/q
f − gp/qp ≤ Mp,q(f)−Mp,q(g)q ≤ p

q
f − gp.

This estimate precisely establishes that Mp,q is a coarse map which is expansive. It is a
bijection, since Mq,p ◦Mp,q = id.

As the unit spheres of Lp-spaces are the same, we may reformulate the Higson-Roe definition in
terms of the unit spheres of lp-spaces.

Definition 2.11. (Higson-Roe) A metric space (X, d) has property A if for all ε > 0 and all R ≥ 0
there exists a function ζ : X → ∂Blp(X) such that

1. ζx − ζyp ≤ ε for all x, y ∈ X satisfying d(x, y) ≤ R;

2. The quantity supx,y{d(x, y) | ζx(y) ∕= 0} is finite.

Indeed, suppose (X, d) satisfies property A for p = 1, let ζ1 be the function provided by the definition.
Define ζp = M1,p ◦ ζ1, then the second condition is automatic, while the first condition follows from
the nonproven estimate. Vise-versa, the same argument applies to ζ1 = Mp,1 ◦ ζp.

Theorem 2.12. Let (X, d) be a coarse space with property A, then (X, d) is coarsely embeddable
into a Hilbert space.

Proof. Since (X, d) has property A, for every n ∈ N there is a function ζn : X → ∂Bℓ2(X)

such that:

1. ζnx − ζny  ≤ 1/2n for all x, y ∈ X satisfying d(x, y) ≤ n;

2. The quantity sn = sup{d(x, y) | ζnx (y) ∕= 0} is finite.

Fix y ∈ X and define a function

f : X → ℓ2(N)⊗ ℓ2(X), f(x) =

∞

n=1

δn ⊗ (ζnx − ζny ).
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It follows from the two conditions above that f is well-defined. Hence, it is enough to
check that f is a coarse embedding. For x, z ∈ X satisfying d(x, z) ≤ R one has

f(x)− f(z) =

∞

n=1

ζnx − ζnz 2 =

∞

n≤R

ζnx − ζnz 2 +
∞

n>R

ζnx − ζnz 2 ≤ 4R+ 1.

It follows that f is coarse. Note that being expansive is equivalent to saying that for every
S ≥ 0, there exists R ≥ 0 such that whenever d(x, y) ≥ R, one has f(x)−f(y) ≥ S. Fix
S ≥ 0 and note that by the second condition above, if d(x, y) ≥ 2sn, then the supports
of ζnx and ζny are disjoint. Therefore, for all x, y ∈ X with d(x, y) > 2sn one has

ζnx − ζny 2 = 2.

Fix k ∈ N such that 2k ≥ s. Define R = max{2sn | n ≤ k} + 1, then for all x, y ∈ X
such that d(x, y) ≥ R one has

f(x)− f(y) =

∞

n=1

ζnx − ζny 2 ≥
k

n=1

ζnx − ζny 2 ≥ 2k ≥ s.

It follows that f is expansive. Hence, it is a coarse embedding.

There are coarse spaces which does not have property A, but they are embeddable into a Hilbert
space. There are also examples of coarse spaces which are not coarsely embeddable into a Hilbert
space. As it was announced, these properties are crucial for the coarse Baum-Connes conjecture. If
(X, d) is a uniformly locally finite metric space that embeds coarsely into a Hilbert space, then the
coarse Baum-Connes conjecture holds for (X, d). The applications of these properties to the rigidity
problem of Roe algebras will be shown in the next talk.
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